Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model.
نویسندگان
چکیده
The mutation causing myotonic dystrophy (DM) has been identified as a CTG expansion in the 3'-untranslated region (3'-UTR) of the DM protein kinase gene ( DMPK ), but the mechanism(s) of pathogenesis remain unknown. Studies using DM patient materials have often produced confusing results. Therefore, to study the effects of the DM mutation in a controlled environment, we have established a cell culture model system using C2C12 mouse myoblasts. By expressing chimeric reporter constructs containing a reporter gene fused to a human DMPK 3'-UTR, we identified both cis and trans effects that are mediated by the DM mutation. Our data show that a mutant DMPK 3'-UTR, with as few as 57 CTGs, had a negative cis effect on protein expression and resulted in the aggregation of reporter transcripts into discrete nuclear foci. We determined by deletion analysis that an expanded (CTG) (n) tract alone was sufficient to mediate these cis effects. Furthermore, in contrast to the normal DMPK 3'-UTR mRNA, a mutant DMPK 3'-UTR mRNA with (CUG)(200)selectively inhibited myogenic differentiation of C2C12 myoblasts. Genetic analysis and the Cre- loxP system were used to clearly demonstrate that the myoblast fusion defect could be rescued by eliminating the expression of the mutant DMPK 3'-UTR transcript. Characterization of spontaneous deletion events mapped the inhibitory effect to the (CTG) (n) expansion and/or the 3' end of the DMPK 3'-UTR. These results provide evidence that the DM mutation acts in cis to reduce protein production (consistent with DMPK haploinsufficiency) and in trans as a 'riboregulator' to inhibit myogenesis.
منابع مشابه
Constitutive and regulated modes of splicing produce six major myotonic dystrophy protein kinase (DMPK) isoforms with distinct properties.
Myotonic dystrophy (DM) is the most prevalent inherited neuromuscular disease in adults. The genetic defect is a CTG triplet repeat expansion in the 3'-untranslated region of the myotonic dystrophy protein kinase ( DMPK ) gene, consisting of 15 exons. Using a transgenic DMPK-overexpressor mouse model, we demonstrate here that the endogenous mouse DMPK gene and the human DMPK transgene produce s...
متن کاملPatient Muscle Shows Decreased Insulin Receptor RNA and Protein Consistent with Abnormal Insulin Resistance
Myotonic dystrophy is a dominantly inherited clinically variable multisystemic disorder, and has been found to be caused by heterozygosity for a trinucleotide repeat expansion mutation in the 3 9 untranslated region of a protein kinase gene (DM kinase). The mechanisms by which the expanded repeat in DNA results in a dominant biochemical defect and the varied clinical phenotype, is not known. We...
متن کاملRNA metabolism in myotonic dystrophy: patient muscle shows decreased insulin receptor RNA and protein consistent with abnormal insulin resistance.
Myotonic dystrophy is a dominantly inherited clinically variable multisystemic disorder, and has been found to be caused by heterozygosity for a trinucleotide repeat expansion mutation in the 3' untranslated region of a protein kinase gene (DM kinase). The mechanisms by which the expanded repeat in DNA results in a dominant biochemical defect and the varied clinical phenotype, is not known. We ...
متن کاملRBFOX1 Cooperates with MBNL1 to Control Splicing in Muscle, Including Events Altered in Myotonic Dystrophy Type 1
With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures...
متن کاملConfirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect.
Myotonic dystrophy (DM), the most common form of muscular dystrophy in adults, is a clinically and genetically heterogeneous neuromuscular disorder. DM is characterized by autosomal dominant inheritance, muscular dystrophy, myotonia, and multisystem involvement. Type 1 DM (DM1) is caused by a (CTG)(n) expansion in the 3' untranslated region of DMPK in 19q13.3. Multiple families, predominantly o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 8 11 شماره
صفحات -
تاریخ انتشار 1999